gamma_functions.py 文件源码

python
阅读 33 收藏 0 点赞 0 评论 0

项目:zippy 作者: securesystemslab 项目源码 文件源码
def eval(cls, a, z):
        from sympy import unpolarify, I, factorial, exp, expint
        if z.is_Number:
            if z is S.NaN:
                return S.NaN
            elif z is S.Infinity:
                return S.Zero
            elif z is S.Zero:
                # TODO: Holds only for Re(a) > 0:
                return gamma(a)

        # We extract branching information here. C/f lowergamma.
        nx, n = z.extract_branch_factor()
        if a.is_integer and (a > 0) == True:
            nx = unpolarify(z)
            if z != nx:
                return uppergamma(a, nx)
        elif a.is_integer and (a <= 0) == True:
            if n != 0:
                return -2*pi*I*n*(-1)**(-a)/factorial(-a) + uppergamma(a, nx)
        elif n != 0:
            return gamma(a)*(1 - exp(2*pi*I*n*a)) + exp(2*pi*I*n*a)*uppergamma(a, nx)

        # Special values.
        if a.is_Number:
            # TODO this should be non-recursive
            if a is S.One:
                return C.exp(-z)
            elif a is S.Half:
                return sqrt(pi)*(1 - erf(sqrt(z)))  # TODO could use erfc...
            elif a.is_Integer or (2*a).is_Integer:
                b = a - 1
                if b.is_positive:
                    return b*cls(b, z) + z**b * C.exp(-z)
                elif b.is_Integer:
                    return expint(-b, z)*unpolarify(z)**(b + 1)

                if not a.is_Integer:
                    return (cls(a + 1, z) - z**a * C.exp(-z))/a
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号