test_transforms.py 文件源码

python
阅读 32 收藏 0 点赞 0 评论 0

项目:zippy 作者: securesystemslab 项目源码 文件源码
def test_fourier_transform():
    from sympy import simplify, expand, expand_complex, factor, expand_trig
    FT = fourier_transform
    IFT = inverse_fourier_transform

    def simp(x):
        return simplify(expand_trig(expand_complex(expand(x))))

    def sinc(x):
        return sin(pi*x)/(pi*x)
    k = symbols('k', real=True)
    f = Function("f")

    # TODO for this to work with real a, need to expand abs(a*x) to abs(a)*abs(x)
    a = symbols('a', positive=True)
    b = symbols('b', positive=True)

    posk = symbols('posk', positive=True)

    # Test unevaluated form
    assert fourier_transform(f(x), x, k) == FourierTransform(f(x), x, k)
    assert inverse_fourier_transform(
        f(k), k, x) == InverseFourierTransform(f(k), k, x)

    # basic examples from wikipedia
    assert simp(FT(Heaviside(1 - abs(2*a*x)), x, k)) == sinc(k/a)/a
    # TODO IFT is a *mess*
    assert simp(FT(Heaviside(1 - abs(a*x))*(1 - abs(a*x)), x, k)) == sinc(k/a)**2/a
    # TODO IFT

    assert factor(FT(exp(-a*x)*Heaviside(x), x, k), extension=I) == \
        1/(a + 2*pi*I*k)
    # NOTE: the ift comes out in pieces
    assert IFT(1/(a + 2*pi*I*x), x, posk,
            noconds=False) == (exp(-a*posk), True)
    assert IFT(1/(a + 2*pi*I*x), x, -posk,
            noconds=False) == (0, True)
    assert IFT(1/(a + 2*pi*I*x), x, symbols('k', negative=True),
            noconds=False) == (0, True)
    # TODO IFT without factoring comes out as meijer g

    assert factor(FT(x*exp(-a*x)*Heaviside(x), x, k), extension=I) == \
        1/(a + 2*pi*I*k)**2
    assert FT(exp(-a*x)*sin(b*x)*Heaviside(x), x, k) == \
        b/(b**2 + (a + 2*I*pi*k)**2)

    assert FT(exp(-a*x**2), x, k) == sqrt(pi)*exp(-pi**2*k**2/a)/sqrt(a)
    assert IFT(sqrt(pi/a)*exp(-(pi*k)**2/a), k, x) == exp(-a*x**2)
    assert FT(exp(-a*abs(x)), x, k) == 2*a/(a**2 + 4*pi**2*k**2)
    # TODO IFT (comes out as meijer G)

    # TODO besselj(n, x), n an integer > 0 actually can be done...

    # TODO are there other common transforms (no distributions!)?
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号