def _integrate_exact(k, pyra):
def f(x):
return x[0]**int(k[0]) * x[1]**int(k[1]) * x[2]**int(k[2])
# map the reference hexahedron [-1,1]^3 to the pyramid
xi = sympy.DeferredVector('xi')
pxi = (
+ pyra[0] * (1 - xi[0])*(1 - xi[1])*(1 - xi[2]) / 8
+ pyra[1] * (1 + xi[0])*(1 - xi[1])*(1 - xi[2]) / 8
+ pyra[2] * (1 + xi[0])*(1 + xi[1])*(1 - xi[2]) / 8
+ pyra[3] * (1 - xi[0])*(1 + xi[1])*(1 - xi[2]) / 8
+ pyra[4] * (1 + xi[2]) / 2
)
pxi = [
sympy.expand(pxi[0]),
sympy.expand(pxi[1]),
sympy.expand(pxi[2]),
]
# determinant of the transformation matrix
J = sympy.Matrix([
[sympy.diff(pxi[0], xi[0]),
sympy.diff(pxi[0], xi[1]),
sympy.diff(pxi[0], xi[2])],
[sympy.diff(pxi[1], xi[0]),
sympy.diff(pxi[1], xi[1]),
sympy.diff(pxi[1], xi[2])],
[sympy.diff(pxi[2], xi[0]),
sympy.diff(pxi[2], xi[1]),
sympy.diff(pxi[2], xi[2])],
])
det_J = sympy.det(J)
# we cannot use abs(), see <https://github.com/sympy/sympy/issues/4212>.
# abs_det_J = sympy.Piecewise((det_J, det_J >= 0), (-det_J, det_J < 0))
# This is quite the leap of faith, but sympy will cowardly bail out
# otherwise.
abs_det_J = det_J
exact = sympy.integrate(
sympy.integrate(
sympy.integrate(abs_det_J * f(pxi), (xi[2], -1, 1)),
(xi[1], -1, +1)
),
(xi[0], -1, +1)
)
return float(exact)
评论列表
文章目录