def Simple_manifold_with_scalar_function_derivative():
Print_Function()
coords = (x, y, z) = symbols('x y z')
basis = (e1, e2, e3, grad) = MV.setup('e_1 e_2 e_3', metric='[1,1,1]', coords=coords)
# Define surface
mfvar = (u, v) = symbols('u v')
X = u*e1 + v*e2 + (u**2 + v**2)*e3
print('\\f{X}{u,v} =', X)
MF = Manifold(X, mfvar)
(eu, ev) = MF.Basis()
# Define field on the surface.
g = (v + 1)*log(u)
print('\\f{g}{u,v} =', g)
# Method 1: Using old Manifold routines.
VectorDerivative = (MF.rbasis[0]/MF.E_sq)*diff(g, u) + (MF.rbasis[1]/MF.E_sq)*diff(g, v)
print('\\eval{\\nabla g}{u=1,v=0} =', VectorDerivative.subs({u: 1, v: 0}))
# Method 2: Using new Manifold routines.
dg = MF.Grad(g)
print('\\eval{\\f{Grad}{g}}{u=1,v=0} =', dg.subs({u: 1, v: 0}))
dg = MF.grad*g
print('\\eval{\\nabla g}{u=1,v=0} =', dg.subs({u: 1, v: 0}))
return
评论列表
文章目录