def eval():
# Load graph
g = Graph(is_training=False); print("Graph loaded")
# Load data
X, Y = load_data(mode="test")
nucl2idx, idx2nucl = load_vocab()
with g.graph.as_default():
sv = tf.train.Supervisor()
with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
# Restore parameters
sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)); print("Restored!")
# Get model name
mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1] # model name
# Inference
if not os.path.exists(hp.results): os.mkdir(hp.results)
with open(os.path.join(hp.results, mname), 'w') as fout:
fout.write("{}\t{}\t{}\n".format("probe", "expected intensity", "predicted intensity"))
expected, predicted = [], []
for step in range(len(X) // hp.batch_size):
x = X[step * hp.batch_size: (step + 1) * hp.batch_size]
y = Y[step * hp.batch_size: (step + 1) * hp.batch_size]
# predict intensities
logits = sess.run(g.logits, {g.x: x})
expected.extend(list(y))
predicted.extend(list(logits))
for xx, yy, ll in zip(x, y, logits): # sequence-wise
fout.write("{}\t{}\t{}\n".format("".join(idx2nucl[idx] for idx in xx), yy, ll))
# Get spearman coefficients
score, _ = spearmanr(expected, predicted)
fout.write("{}{}\n".format("Spearman Coefficient: ", score))
# Plot the ranks of the top 100 positive probes
expected_predicted = sorted(zip(expected, predicted), key=lambda x: float(x[0]), reverse=True)
expected_predicted = [list(each) + [int(i < 100)] for i, each in enumerate(expected_predicted)]
expected_predicted = sorted(expected_predicted, key=lambda x: float(x[1]), reverse=True)
predicted_ranks = np.array([each[-1] for each in expected_predicted])
# Plot
axprops = dict(xticks=[], yticks=[])
barprops = dict(aspect='auto', cmap=plt.cm.binary, interpolation='nearest')
fig = plt.figure()
predicted_ranks.shape = len(predicted_ranks), 1
ax = fig.add_axes([0, 0, .5, 1], **axprops)
ax.imshow(predicted_ranks, **barprops)
fig.savefig('fig/rank.png')
评论列表
文章目录