def eval(mode):
'''
Get a Spearman rank-order correlation coefficient.
Args:
mode: A string. Either `val` or `test`.
'''
# Set save directory
savedir = hp.valdir if mode=="val" else hp.testdir
# Load graph
g = Graph(is_training=False)
print("Graph loaded")
# Load data
X, Y = load_data(mode=mode)
nucl2idx, idx2nucl = load_vocab()
with g.graph.as_default():
sv = tf.train.Supervisor()
with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
# Restore parameters
sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir))
print("Restored!")
# Get model
mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1] # model name
# Inference
if not os.path.exists(savedir): os.mkdir(savedir)
with open("{}/{}".format(savedir, mname), 'w') as fout:
fout.write("{}\t{}\t{}]\n".format("probe", "expected intensity", "predicted intensity"))
expected, got = [], []
for step in range(len(X) // hp.batch_size):
x = X[step * hp.batch_size: (step + 1) * hp.batch_size]
y = Y[step * hp.batch_size: (step + 1) * hp.batch_size]
# predict nucl
logits = sess.run(g.logits, {g.x: x})
for xx, yy, ll in zip(x, y, logits): # sequence-wise
fout.write("{}\t{}\t{}\n".format("".join(idx2nucl[idx] for idx in xx), yy, ll))
expected.append(yy)
got.append(ll)
# Spearman rank coefficient
score, _ =spearmanr(expected, got)
fout.write("Spearman rank correlation coefficients: " + str(score))
评论列表
文章目录