def test():
x, y = load_data(type="test")
g = Graph(is_training=False)
with g.graph.as_default():
sv = tf.train.Supervisor()
with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
# Restore parameters
sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir))
print("Restored!")
# Get model name
mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1] # model name
if not os.path.exists('results'): os.mkdir('results')
fout = 'results/{}.txt'.format(mname)
import copy
_preds = copy.copy(x)
while 1:
istarget, probs, preds = sess.run([g.istarget, g.probs, g.preds], {g.x:_preds, g.y: y})
probs = probs.astype(np.float32)
preds = preds.astype(np.float32)
probs *= istarget #(N, 9, 9)
preds *= istarget #(N, 9, 9)
probs = np.reshape(probs, (-1, 9*9)) #(N, 9*9)
preds = np.reshape(preds, (-1, 9*9))#(N, 9*9)
_preds = np.reshape(_preds, (-1, 9*9))
maxprob_ids = np.argmax(probs, axis=1) # (N, ) <- blanks of the most probable prediction
maxprobs = np.max(probs, axis=1, keepdims=False)
for j, (maxprob_id, maxprob) in enumerate(zip(maxprob_ids, maxprobs)):
if maxprob != 0:
_preds[j, maxprob_id] = preds[j, maxprob_id]
_preds = np.reshape(_preds, (-1, 9, 9))
_preds = np.where(x==0, _preds, y) # # Fill in the non-blanks with correct numbers
if np.count_nonzero(_preds) == _preds.size: break
write_to_file(x.astype(np.int32), y, _preds.astype(np.int32), fout)
评论列表
文章目录