def train(args,encdec,model_name_base = "./{}/model/cvaehidden_kl_{}_{}_l{}.npz"):
encdec.loadModel(model_name_base,args)
if args.gpu >= 0:
import cupy as cp
global xp;
xp = cp
encdec.to_gpu()
optimizer = optimizers.Adam()
optimizer.setup(encdec)
for e_i in range(encdec.epoch_now, args.epoch):
encdec.setEpochNow(e_i)
loss_sum = 0
for tupl in encdec.getBatchGen(args):
loss = encdec(tupl)
loss_sum += loss.data
encdec.cleargrads()
loss.backward()
optimizer.update()
print("epoch{}:loss_sum:{}".format(e_i, loss_sum))
model_name = model_name_base.format(args.dataname, args.dataname, e_i, args.n_latent)
serializers.save_npz(model_name, encdec)
评论列表
文章目录