def Test(image_Name,flag):
if(flag==False):
saver = tf.train.Saver()
saver = tf.train.import_meta_graph('Model Directory/our_model.meta')
saver.restore(sess, 'Model Directory/our_model')
GreyImagesRezied_Batch = []
OriginalImage_Batch=[]
Original_Img = Image.open(TestingImgPath+image_Name).convert('RGB').convert('L')
width,height=Original_Img.size
Original_Img = Original_Img.resize((int(width/8) * 8,int(height/8) * 8),Image.ANTIALIAS)
Grey_img = Original_Img.resize((224,224),Image.ANTIALIAS)
Original_Img = np.asanyarray(Original_Img)
Grey_img = np.asanyarray(Grey_img)
img_shape = Original_Img.shape
Original_reshaped = Original_Img.reshape(img_shape[0],img_shape[1], GreyChannels)#[H,W,1]
OriginalImage_Batch.append(Original_reshaped)#[#imgs,224,224,1]
img_reshaped = Grey_img.reshape(224, 224, GreyChannels)#[224,224,1]
GreyImagesRezied_Batch.append(img_reshaped)#[#imgs,224,224,1]
TestImage = tf.placeholder(dtype=tf.float32,shape=[1,224,224,1])
original = tf.placeholder(dtype=tf.float32,shape=[1,None,None,1])
Prediction = TestModel(original,TestImage,Original_Img.shape[0],Original_Img.shape[1])
Chrominance = sess.run(Prediction,feed_dict={TestImage:GreyImagesRezied_Batch,original:OriginalImage_Batch})
NewImg = np.empty((Original_Img.shape[0],Original_Img.shape[1],3))
for i in range(len(Original_reshaped[:,1,0])):
for j in range(len(Original_reshaped[1,:,0])):
NewImg[i,j,0]= 0 + ( (Original_reshaped[i,j,0] - 0) * (100 - 0) / (255 - 0) )
NewImg[:,:,1] = DeNormalize(Chrominance[0,:,:,0],0,1)
NewImg[:,:,2] = DeNormalize(Chrominance[0,:,:,1],0,1)
NewImg = color.lab2rgb(NewImg)
plt.imsave(ResultImagePath+image_Name[0:-4]+"_Colored"+image_Name[len(image_Name)-4:],NewImg)
#------------------------------------------------
single_File_For_ColorizationModel_For_Not_OOP_Fan.py 文件源码
python
阅读 24
收藏 0
点赞 0
评论 0
评论列表
文章目录