def predict_image(self, test_img):
"""
predicts classes of input image
:param test_img: filepath to image to predict on
:return: segmented result
"""
# imgs = io.imread(test_img).astype('float').reshape(5, 216, 160)
imgs = mpimg.imread(test_img).astype('float')
imgs = rgb2gray(imgs).reshape(5, 216, 160)
plist = []
# create patches_to_predict from an entire slice
for img in imgs[:-1]:
if np.max(img) != 0:
img /= np.max(img)
p = extract_patches_2d(img, (33, 33))
plist.append(p)
patches_to_predict = np.array(
zip(np.array(plist[0]), np.array(plist[1]), np.array(plist[2]), np.array(plist[3])))
# predict classes of each pixel based on model
full_pred = self.model.predict_classes(patches_to_predict)
fp1 = full_pred.reshape(184, 128)
return fp1
brain_tumor_segmentation_models.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录