def run_sample_type_prediction(tag_to_val, mapped_terms, real_props):
# Load the dilled vectorizer and model
vectorizer_f = pr.resource_filename(__name__, join("predict_sample_type", "sample_type_vectorizor.dill"))
classifier_f = pr.resource_filename(__name__, join("predict_sample_type", "sample_type_classifier.dill"))
with open(vectorizer_f, "rb") as f:
vectorizer = dill.load(f)
with open(classifier_f, "rb") as f:
model = dill.load(f)
# Make sample-type prediction
feat_v = vectorizer.convert_to_features(
get_ngrams_from_tag_to_val(tag_to_val),
mapped_terms)
predicted, confidence = model.predict(
feat_v,
mapped_terms,
real_props)
return predicted, confidence
run_sample_type_predictor.py 文件源码
python
阅读 18
收藏 0
点赞 0
评论 0
评论列表
文章目录