def iuwt_1D(wave):
"""
Inverse Starlet transform.
INPUTS:
wave: wavelet decomposition of an image.
OUTPUTS:
out: image reconstructed from wavelet coefficients
OPTIONS:
convol2d: if set, a 2D version of the filter is used (slower, default is 0)
"""
mode = 'nearest'
lvl,n1= np.shape(wave)
h = np.array([1./16, 1./4, 3./8, 1./4, 1./16])
n = np.size(h)
cJ = np.copy(wave[lvl-1,:])
for i in np.linspace(1,lvl-1,lvl-1):
newh = np.zeros((1,n+(n-1)*(2**(lvl-1-i)-1)))
newh[0,np.int_(np.linspace(0,np.size(newh)-1,len(h)))] = h
H = np.dot(newh.T,newh)
###### Line convolution
cnew = sc.convolve1d(cJ,newh[0,:],axis = 0, mode = mode)
cJ = cnew+wave[lvl-1-i,:]
out = cJ
return out
wave_transform.py 文件源码
python
阅读 30
收藏 0
点赞 0
评论 0
评论列表
文章目录