def test_get_measurements_std():
dt_means, dt_stds, dlna_means, dlna_stds = \
fw.get_measurements_std({})
assert len(dt_means) == 0
assert len(dt_stds) == 0
assert len(dlna_means) == 0
assert len(dlna_stds) == 0
dt_means, dt_stds, dlna_means, dlna_stds = \
fw.get_measurements_std(measures)
# from tests/data/window/measurements.fake.json
_true_dt_mean = \
{"R": np.mean([1, -1, 1, 1, -2]),
"T": np.mean([1, 1.5, -2.5]),
"Z": np.mean([1, 2, -1.5, 2, -5, -0.2, 0.8, -1.6, 1.6, 0.9])}
_true_dt_stds = \
{"R": np.std([1, -1, 1, 1, -2]),
"T": np.std([1, 1.5, -2.5]),
"Z": np.std([1, 2, -1.5, 2, -5, -0.2, 0.8, -1.6, 1.6, 0.9])}
_true_dlna_mean = \
{"R": np.mean([0.7, -0.7, 0.6, 1.0, -0.8]),
"T": np.mean([0.9, 0.3, -0.7]),
"Z": np.mean([0.6, 0.4, -0.5, 1.2, -1.5, -0.2, 0.8, -0.6, 1.1, 0.9])}
_true_dlna_stds = \
{"R": np.std([0.7, -0.7, 0.6, 1.0, -0.8]),
"T": np.std([0.9, 0.3, -0.7]),
"Z": np.std([0.6, 0.4, -0.5, 1.2, -1.5, -0.2, 0.8, -0.6, 1.1, 0.9])}
for comp in dt_means:
npt.assert_array_almost_equal(dt_means[comp], _true_dt_mean[comp])
npt.assert_array_almost_equal(dt_stds[comp], _true_dt_stds[comp])
npt.assert_array_almost_equal(dlna_means[comp], _true_dlna_mean[comp])
npt.assert_array_almost_equal(dlna_stds[comp], _true_dlna_stds[comp])
test_filter_windows.py 文件源码
python
阅读 18
收藏 0
点赞 0
评论 0
评论列表
文章目录