def test_image_input(self):
from _torch_converter import convert
coreml_model = convert(
self.model,
[self.input.shape],
input_names=['image'],
image_input_names=['image'],
preprocessing_args={
'is_bgr': False,
'red_bias': 0.0,
'green_bias': 0.0,
'blue_bias': 0.0,
'image_scale': 0.5
}
)
input_array = (np.random.rand(224, 224, 3) * 255).astype('uint8')
input_image = Image.fromarray(input_array).convert('RGBA')
output_array = coreml_model.predict({"image": input_image})["output"]
output_array = output_array.transpose((1, 2, 0))
npt.assert_array_equal(output_array, input_array * 0.5)
评论列表
文章目录