def test_log_prior_3d():
# Data
X = np.array([[-0.3406, -0.0593, -0.0686]])
N, D = X.shape
# Setup densities
m_0 = np.zeros(D)
k_0 = 0.05
v_0 = D + 1
S_0 = 0.001*np.eye(D)
prior = NIW(m_0, k_0, v_0, S_0)
gmm = GaussianComponents(X, prior)
# Calculate log predictave under prior alone
lp = gmm.log_prior(0)
lp_expected = -0.472067277015
npt.assert_almost_equal(lp, lp_expected)
评论列表
文章目录