def read_dataset(data_dir):
pickle_filename = "flowers_data.pickle"
pickle_filepath = os.path.join(data_dir, pickle_filename)
if not os.path.exists(pickle_filepath):
utils.maybe_download_and_extract(data_dir, DATA_URL, is_tarfile=True)
flower_folder = os.path.splitext(DATA_URL.split("/")[-1])[0]
result = create_image_lists(os.path.join(data_dir, flower_folder))
print "Training set: %d" % len(result['train'])
print "Test set: %d" % len(result['test'])
print "Validation set: %d" % len(result['validation'])
print "Pickling ..."
with open(pickle_filepath, 'wb') as f:
pickle.dump(result, f, pickle.HIGHEST_PROTOCOL)
else:
print "Found pickle file!"
with open(pickle_filepath, 'rb') as f:
result = pickle.load(f)
training_images = result['train']
testing_images = result['test']
validation_images = result['validation']
del result
print ("Training: %d, Validation: %d, Test: %d" % (
len(training_images), len(validation_images), len(testing_images)))
return training_images, testing_images, validation_images
read_FlowersDataset.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录