def sample(args):
# import configuration
with open(os.path.join(args.save_dir, 'config.pkl'), 'rb') as f:
saved_args = cPickle.load(f)
with open(os.path.join(args.save_dir, 'words_vocab.pkl'), 'rb') as f:
words, vocab = cPickle.load(f)
# import the trained model
model = Model(saved_args, True)
with tf.Session() as sess:
# initialize the model
tf.initialize_all_variables().run()
saver = tf.train.Saver(tf.all_variables())
ckpt = tf.train.get_checkpoint_state(args.save_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
# sample the new sequence word by word
literature = model.sample(sess, words, vocab, args.n, args.start, args.sample)
with codecs.open('result/sequence.txt','a','utf-8') as f:
f.write(literature+'\n\n')
print(literature)
sample.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录