def extract_features(file_name):
X, sample_rate = librosa.load(file_name)
stft = np.abs(librosa.stft(X))
mfccs = np.array(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=8).T)
chroma = np.array(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T)
mel = np.array(librosa.feature.melspectrogram(X, sr=sample_rate).T)
contrast = np.array(librosa.feature.spectral_contrast(S=stft, sr=sample_rate).T)
tonnetz = np.array(librosa.feature.tonnetz(y=librosa.effects.harmonic(X), sr=sample_rate).T)
return mfccs,chroma,mel,contrast,tonnetz
trainModel.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录