approximators.py 文件源码

python
阅读 22 收藏 0 点赞 0 评论 0

项目:dqn_vizdoom_theano 作者: mihahauke 项目源码 文件源码
def _initialize_network(self, img_input_shape, misc_len, output_size, img_input, misc_input=None, **kwargs):
        input_layers = []
        inputs = [img_input]
        # weights_init = lasagne.init.GlorotUniform("relu")
        weights_init = lasagne.init.HeNormal("relu")

        network = ls.InputLayer(shape=img_input_shape, input_var=img_input)
        input_layers.append(network)
        network = ls.Conv2DLayer(network, num_filters=32, filter_size=8, nonlinearity=rectify, W=weights_init,
                                 b=lasagne.init.Constant(0.1), stride=4)
        network = ls.Conv2DLayer(network, num_filters=64, filter_size=4, nonlinearity=rectify, W=weights_init,
                                 b=lasagne.init.Constant(0.1), stride=2)
        network = ls.Conv2DLayer(network, num_filters=64, filter_size=3, nonlinearity=rectify, W=weights_init,
                                 b=lasagne.init.Constant(0.1), stride=1)
        network = ls.FlattenLayer(network)

        if self.misc_state_included:
            layers_for_merge = []

            health_inputs = 4
            units_per_health_input = 100
            for i in range(health_inputs):
                oh_input = lasagne.utils.one_hot(misc_input[:, i] - 1, units_per_health_input)
                health_input_layer = ls.InputLayer(shape=(None, units_per_health_input), input_var=oh_input)
                inputs.append(oh_input)
                input_layers.append(health_input_layer)
                layers_for_merge.append(health_input_layer)

            time_inputs = 4
            # TODO set this somewhere else cause it depends on skiprate and timeout ....
            units_pertime_input = 525
            for i in range(health_inputs,health_inputs+time_inputs):
                oh_input = lasagne.utils.one_hot(misc_input[:, i] - 1, units_pertime_input)
                time_input_layer = ls.InputLayer(shape=(None, units_pertime_input), input_var=oh_input)
                inputs.append(oh_input)
                input_layers.append(time_input_layer)
                layers_for_merge.append(time_input_layer)

            other_misc_input = misc_input[:, health_inputs+time_inputs:]
            other_misc_shape = (None, misc_len - health_inputs-time_inputs)
            other_misc_input_layer = ls.InputLayer(shape=other_misc_shape,
                                             input_var=other_misc_input)
            input_layers.append(other_misc_input_layer)
            layers_for_merge.append(other_misc_input_layer)
            inputs.append(other_misc_input)

            layers_for_merge.append(network)
            network = ls.ConcatLayer(layers_for_merge)

        network = ls.DenseLayer(network, 512, nonlinearity=rectify,
                                W=weights_init, b=lasagne.init.Constant(0.1))

        network = ls.DenseLayer(network, output_size, nonlinearity=None, b=lasagne.init.Constant(.1))
        return network, input_layers, inputs
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号