base.py 文件源码

python
阅读 17 收藏 0 点赞 0 评论 0

项目:nn-patterns 作者: pikinder 项目源码 文件源码
def _invert_layer(self, layer, feeder):
        layer_type = type(layer)

        if L.get_output_shape(feeder) != L.get_output_shape(layer):
            feeder = L.ReshapeLayer(feeder, (-1,)+L.get_output_shape(layer)[1:])
        if layer_type is L.InputLayer:
            return self._invert_InputLayer(layer, feeder)
        elif layer_type is L.FlattenLayer:
            return self._invert_FlattenLayer(layer, feeder)
        elif layer_type is L.DenseLayer:
            return self._invert_DenseLayer(layer, feeder)
        elif layer_type is L.Conv2DLayer:
            return self._invert_Conv2DLayer(layer, feeder)
        elif layer_type is L.DropoutLayer:
            return self._invert_DropoutLayer(layer, feeder)
        elif layer_type in [L.MaxPool2DLayer, L.MaxPool1DLayer]:
            return self._invert_MaxPoolingLayer(layer, feeder)
        elif layer_type is L.PadLayer:
            return self._invert_PadLayer(layer, feeder)
        elif layer_type is L.SliceLayer:
            return self._invert_SliceLayer(layer, feeder)
        elif layer_type is L.LocalResponseNormalization2DLayer:
            return self._invert_LocalResponseNormalisation2DLayer(layer, feeder)
        elif layer_type is L.GlobalPoolLayer:
            return self._invert_GlobalPoolLayer(layer, feeder)
        else:
            return self._invert_UnknownLayer(layer, feeder)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号