FlowNetC.py 文件源码

python
阅读 20 收藏 0 点赞 0 评论 0

项目:theano-flownet 作者: Ignotus 项目源码 文件源码
def build_model(weights):
    net = dict()

    # T.nnet.abstract_conv.bilinear_upsampling doesn't work properly if not to
    # specify a batch size
    batch_size = 1

    net['input_1'] = InputLayer([batch_size, 3, 384, 512])
    net['input_2'] = InputLayer([batch_size, 3, 384, 512])

    net['conv1'] = leaky_conv(
        net['input_1'], num_filters=64, filter_size=7, stride=2)
    net['conv1b'] = leaky_conv(
        net['input_2'], num_filters=64, filter_size=7, stride=2,
        W=net['conv1'].W, b=net['conv1'].b)

    net['conv2'] = leaky_conv(
        net['conv1'], num_filters=128, filter_size=5, stride=2)
    net['conv2b'] = leaky_conv(
        net['conv1b'], num_filters=128, filter_size=5, stride=2,
        W=net['conv2'].W, b=net['conv2'].b)

    net['conv3'] = leaky_conv(
        net['conv2'], num_filters=256, filter_size=5, stride=2)
    net['conv3b'] = leaky_conv(
        net['conv2b'], num_filters=256, filter_size=5, stride=2,
        W=net['conv3'].W, b=net['conv3'].b)

    net['corr'] = CorrelationLayer(net['conv3'], net['conv3b'])
    net['corr'] = ExpressionLayer(net['corr'], leaky_rectify)

    net['conv_redir'] = leaky_conv(
        net['conv3'], num_filters=32, filter_size=1, stride=1, pad=0)

    net['concat'] = ConcatLayer([net['conv_redir'], net['corr']])

    net['conv3_1'] = leaky_conv(net['concat'], num_filters=256, filter_size=3, stride=1)

    net['conv4'] = leaky_conv(net['conv3_1'], num_filters=512, filter_size=3, stride=2)
    net['conv4_1'] = leaky_conv(net['conv4'], num_filters=512, filter_size=3, stride=1)

    net['conv5'] = leaky_conv(net['conv4_1'], num_filters=512, filter_size=3, stride=2)
    net['conv5_1'] = leaky_conv(net['conv5'], num_filters=512, filter_size=3, stride=1)

    net['conv6'] = leaky_conv(net['conv5_1'], num_filters=1024, filter_size=3, stride=2)
    net['conv6_1'] = leaky_conv(net['conv6'], num_filters=1024, filter_size=3, stride=1)

    for layer_id in ['1', '2', '3', '_redir', '3_1', '4', '4_1', '5', '5_1', '6', '6_1']:
        layer_name = 'conv' + layer_id
        print(layer_name, net[layer_name].W.shape.eval(), weights[layer_name][0].shape)
        print(layer_name, net[layer_name].b.shape.eval(), weights[layer_name][1].shape)
        net[layer_name].W.set_value(weights[layer_name][0])
        net[layer_name].b.set_value(weights[layer_name][1])

    refine_flow(net, weights)

    return net
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号