def build_fcae(input_var, channels=1):
ret = {}
ret['input'] = layer = InputLayer(shape=(None, channels, None, None), input_var=input_var)
ret['conv1'] = layer = bn(Conv2DLayer(layer, num_filters=128, filter_size=5, pad='full'))
ret['pool1'] = layer = MaxPool2DLayer(layer, pool_size=2)
ret['conv2'] = layer = bn(Conv2DLayer(layer, num_filters=256, filter_size=3, pad='full'))
ret['pool2'] = layer = MaxPool2DLayer(layer, pool_size=2)
ret['conv3'] = layer = bn(Conv2DLayer(layer, num_filters=32, filter_size=3, pad='full'))
ret['enc'] = layer = GlobalPoolLayer(layer)
ret['ph1'] = layer = NonlinearityLayer(layer, nonlinearity=None)
ret['ph2'] = layer = NonlinearityLayer(layer, nonlinearity=None)
ret['unenc'] = layer = bn(InverseLayer(layer, ret['enc']))
ret['deconv3'] = layer = bn(Conv2DLayer(layer, num_filters=256, filter_size=3))
ret['depool2'] = layer = InverseLayer(layer, ret['pool2'])
ret['deconv2'] = layer = bn(Conv2DLayer(layer, num_filters=128, filter_size=3))
ret['depool1'] = layer = InverseLayer(layer, ret['pool1'])
ret['output'] = layer = Conv2DLayer(layer, num_filters=1, filter_size=5,
nonlinearity=nn.nonlinearities.sigmoid)
return ret
评论列表
文章目录