mylayers.py 文件源码

python
阅读 27 收藏 0 点赞 0 评论 0

项目:iterative_inference_segm 作者: adri-romsor 项目源码 文件源码
def __init__(self, l_in, bgr_mean=np.array([103.939, 116.779, 123.68]),
                 data_format='bc01', **kwargs):
        """A Layer to normalize and convert images from RGB to BGR
        This layer converts images from RGB to BGR to adapt to Caffe
        that uses OpenCV, which uses BGR. It also subtracts the
        per-pixel mean. From:
        https://github.com/fvisin/reseg/blob/variable_size_images/vgg16.py
        Parameters
        ----------
        l_in : :class:``lasagne.layers.Layer``
            The incoming layer, typically an
            :class:``lasagne.layers.InputLayer``
        bgr_mean : iterable of 3 ints
            The mean of each channel. By default, the ImageNet
            mean values are used.
        data_format : str
            The format of l_in, either `b01c` (batch, rows, cols,
            channels) or `bc01` (batch, channels, rows, cols)
        """
        super(RGBtoBGRLayer, self).__init__(l_in, **kwargs)
        assert data_format in ['bc01', 'b01c']
        self.l_in = l_in
        floatX = theano.config.floatX
        self.bgr_mean = bgr_mean.astype(floatX)
        self.data_format = data_format
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号