avnet.py 文件源码

python
阅读 19 收藏 0 点赞 0 评论 0

项目:ip-avsr 作者: lzuwei 项目源码 文件源码
def create_pretrained_substream(weights, biases, input_shape, input_var, mask_shape, mask_var, name,
                                lstm_size=250, win=T.iscalar('theta'), nonlinearity=rectify,
                                w_init_fn=las.init.Orthogonal(), use_peepholes=True):
    gate_parameters = Gate(
        W_in=w_init_fn, W_hid=w_init_fn,
        b=las.init.Constant(0.))
    cell_parameters = Gate(
        W_in=w_init_fn, W_hid=w_init_fn,
        # Setting W_cell to None denotes that no cell connection will be used.
        W_cell=None, b=las.init.Constant(0.),
        # By convention, the cell nonlinearity is tanh in an LSTM.
        nonlinearity=tanh)

    l_input = InputLayer(input_shape, input_var, 'input_'+name)
    l_mask = InputLayer(mask_shape, mask_var, 'mask')

    symbolic_batchsize_raw = l_input.input_var.shape[0]
    symbolic_seqlen_raw = l_input.input_var.shape[1]

    l_reshape1_raw = ReshapeLayer(l_input, (-1, input_shape[-1]), name='reshape1_'+name)
    l_encoder_raw = create_pretrained_encoder(l_reshape1_raw, weights, biases,
                                              [2000, 1000, 500, 50],
                                              [nonlinearity, nonlinearity, nonlinearity, linear],
                                              ['fc1_'+name, 'fc2_'+name, 'fc3_'+name, 'bottleneck_'+name])
    input_len = las.layers.get_output_shape(l_encoder_raw)[-1]

    l_reshape2 = ReshapeLayer(l_encoder_raw,
                                  (symbolic_batchsize_raw, symbolic_seqlen_raw, input_len),
                                  name='reshape2_'+name)
    l_delta = DeltaLayer(l_reshape2, win, name='delta_'+name)

    l_lstm = LSTMLayer(
        l_delta, int(lstm_size), peepholes=use_peepholes,
        # We need to specify a separate input for masks
        mask_input=l_mask,
        # Here, we supply the gate parameters for each gate
        ingate=gate_parameters, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        # We'll learn the initialization and use gradient clipping
        learn_init=True, grad_clipping=5., name='lstm_'+name)

    return l_lstm
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号