def build_combination(input_var, output_nodes, input_size, stocks, period, feature_types):
# Input layer
input_layer = InputLayer(shape=(None, 1, input_size), input_var=input_var)
assert input_size == stocks * period * feature_types
input_layer = ReshapeLayer(input_layer, (([0], stocks, period, feature_types)))
#slice for partition
stock_feature_type_layers = []
for ix in range(stocks):
stock_layer = SliceLayer(input_layer, indices=ix, axis=1)
this_stock_feature_type_layers = []
for rx in range(feature_types):
this_stock_feature_type_layers.append(SliceLayer(stock_layer, indices=rx, axis=1))
stock_feature_type_layers.append(this_stock_feature_type_layers)
stock_networks = []
for this_stock_feature_type_layers in stock_feature_type_layers:
this_stock_networks = []
for feature_type_layer in this_stock_feature_type_layers:
tmp = DenseLayer(dropout(feature_type_layer, p=.2),
num_units=10, nonlinearity=tanh)
tmp = DenseLayer(dropout(tmp, p=.5), num_units=1, nonlinearity=tanh)
this_stock_networks.append(tmp)
this_stock_network = ConcatLayer(this_stock_networks)
stock_network = DenseLayer(dropout(this_stock_network, p=.5),
num_units=1, nonlinearity=tanh)
stock_networks.append(stock_network)
network = ConcatLayer(stock_networks)
network = DenseLayer(dropout(network, p=.5),
num_units=output_nodes, nonlinearity=sigmoid)
return network, stock_networks
评论列表
文章目录