def generator(input_var,Y):
yb = Y#.dimshuffle(0, 1, 'x', 'x')
G_1 = lasagne.layers.InputLayer(shape=(None, NLAT,1,1),input_var=input_var)
G_2 = lasagne.layers.InputLayer(shape=(None, 10),input_var=Y)
network=G_1
network_yb=G_2
network = conv_layer(network, 1, 4 * 4 * 128, 1, 'valid')
#print(input_var.shape[0])
network = ll.ReshapeLayer(network, (-1, 128, 4, 4))
network = CondConvConcatLayer([network,network_yb])
network = resnet_block(network, 3,138)
network = CondConvConcatLayer([network,network_yb])
#network = resnet_block(network, 3, 128)
network = BilinearUpsampling(network, ratio=2)
network = batch_norm(conv_layer(network, 3,138, 1, 'same'))
network = CondConvConcatLayer([network,network_yb])
network = resnet_block(network, 3, 148)
network = CondConvConcatLayer([network,network_yb])
network = BilinearUpsampling(network, ratio=2)
network = batch_norm(conv_layer(network, 3, 32, 1, 'valid'))
network = BilinearUpsampling(network, ratio=2)
network = batch_norm(conv_layer(network, 3, 32, 1, 'same'))
network = CondConvConcatLayer([network,network_yb])
#network = resnet_block(network, 3, 32)
network = conv_layer(network, 1, 1, 1, 'valid', nonlinearity=sigmoid)
#network =lasagne.layers.Conv2DLayer(network, num_filters=1, filter_size=1, stride=1, nonlinearity=sigmoid)
return network, G_1,G_2
# In[23]:
评论列表
文章目录