def generator(input_var):
network = lasagne.layers.InputLayer(shape=(None, NLAT,1,1),
input_var=input_var)
network = conv_layer(network, 1, 4 * 4 * 128, 1, 'valid')
#print(input_var.shape[0])
network = ll.ReshapeLayer(network, (-1, 128, 4, 4))
network = resnet_block(network, 3, 128)
network = resnet_block(network, 3, 128)
network = BilinearUpsampling(network, ratio=2)
network = batch_norm(conv_layer(network, 3, 64, 1, 'same'))
network = resnet_block(network, 3, 64)
network = BilinearUpsampling(network, ratio=2)
network = batch_norm(conv_layer(network, 3, 32, 1, 'valid'))
network = BilinearUpsampling(network, ratio=2)
network = resnet_block(network, 3, 32)
network = conv_layer(network, 1, 1, 1, 'valid', nonlinearity=sigmoid)
#network =lasagne.layers.Conv2DLayer(network, num_filters=1, filter_size=1, stride=1, nonlinearity=sigmoid)
return network
# In[23]:
评论列表
文章目录