def test_concatlayer():
a = np.array([
[
[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]
],
[
[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]
]
], dtype=np.int32)
b = np.array([
[
[5, 6, 7],
[5, 6, 7],
[5, 6, 7]
],
[
[5, 6, 7],
[5, 6, 7],
[5, 6, 7]
]
], dtype=np.int32)
input_var = T.tensor3('input', dtype='int32')
dct_var = T.tensor3('dct', dtype='int32')
l_in = InputLayer((None, None, 4), input_var, name='input')
l_dct = InputLayer((None, None, 3), dct_var, name='dct')
l_merge = ConcatLayer([l_in, l_dct], axis=2, name='merge')
network = las.layers.get_all_layers(l_merge)
print_network(network)
output = las.layers.get_output(l_merge)
merge_fn = theano.function([input_var, dct_var], output, allow_input_downcast=True)
res = merge_fn(a, b)
assert res.shape == (2, 3, 7)
评论列表
文章目录