def build_network(self, input_var = None, batch_size = None):
print "build_network in VideoClassifier executed.."
print "inputs are : " , self.sinputs
if not input_var is None: self.sinputs = input_var
if not batch_size is None:
self.batch_size = batch_size
# Merge or fuse or concatenate incoming layers
self.network['ConcatLayer'] = lasagne.layers.ConcatLayer([self.right_network['FC_2'], self.left_network['FC_2']], axis=1, cropping=None)
self.network['FC_3'] = batch_norm(lasagne.layers.DenseLayer(
lasagne.layers.dropout(self.network['ConcatLayer'], p=self.dropout_rates[0]),
num_units=84,
nonlinearity=lasagne.nonlinearities.tanh))
self.network['prob'] = batch_norm(lasagne.layers.DenseLayer(
lasagne.layers.dropout(self.network['FC_3'], p=self.dropout_rates[2]),
num_units=self.fc_layers[2],
nonlinearity=lasagne.nonlinearities.softmax))
return self.network
videoClassifier_lasagne.py 文件源码
python
阅读 15
收藏 0
点赞 0
评论 0
评论列表
文章目录