def build_network(self, input_var=None, batch_size = None):
print "build_network() in SkeletonClassifier invoked"
print self.sinputs
if not input_var is None: self.sinputs = input_var
if batch_size: self.batch_size = batch_size
if not input_var is None: self.sinputs = input_var
if not batch_size is None:
self.batch_size = batch_size
self.network['input'] = lasagne.layers.InputLayer(shape=(self.batch_size,self.nframes,1,self.dlength), input_var=self.sinputs[0])
self.network['FC_1'] = batch_norm(lasagne.layers.DenseLayer( lasagne.layers.dropout(self.network['input'], p=self.dropout_rates[1]),
num_units=self.fc_layers[0],nonlinearity=lasagne.nonlinearities.tanh))
self.network['FC_2'] = batch_norm(lasagne.layers.DenseLayer(
lasagne.layers.dropout(self.network['FC_1'], p=self.dropout_rates[2]),
num_units=self.fc_layers[1],
nonlinearity=lasagne.nonlinearities.tanh))
self.network['FC_3'] = batch_norm(lasagne.layers.DenseLayer(
lasagne.layers.dropout(self.network['FC_2'], p=self.dropout_rates[3]),
num_units=self.fc_layers[2],
nonlinearity=lasagne.nonlinearities.tanh))
self.network['prob'] = lasagne.layers.DenseLayer(
lasagne.layers.dropout(self.network['FC_3'], p=.2),
num_units=self.nclasses,
nonlinearity=lasagne.nonlinearities.softmax)
return self.network
skeletonClassifier_lasagne.py 文件源码
python
阅读 15
收藏 0
点赞 0
评论 0
评论列表
文章目录