def build_network(self, input_var=None):
if not input_var is None: self.sinputs = input_var
self.network['input'] = lasagne.layers.InputLayer(shape=(self.batch_size, 1, self.input_size['audio'][0],self.input_size['audio'][1]),
input_var=self.sinputs[0])
self.network['Conv2D_1'] = batch_norm(lasagne.layers.Conv2DLayer(
lasagne.layers.dropout(self.network['input'], p=self.dropout_rates[0]) , num_filters=25, filter_size=(5, 5),
nonlinearity=lasagne.nonlinearities.tanh,
W=lasagne.init.GlorotUniform()))
self.network['MaxPool2D_1'] = lasagne.layers.MaxPool2DLayer(self.network['Conv2D_1'], pool_size=(1, 1))
self.network['FC_1'] = batch_norm(lasagne.layers.DenseLayer(
lasagne.layers.dropout(self.network['MaxPool2D_1'], p=self.dropout_rates[1]),
num_units=self.fc_layers[0],
nonlinearity=lasagne.nonlinearities.tanh))
self.network['FC_N'] = batch_norm(lasagne.layers.DenseLayer(lasagne.layers.dropout(self.network['FC_1'], p=self.dropout_rates[2]),
num_units=self.fc_layers[1],
nonlinearity=lasagne.nonlinearities.tanh))
self.network['prob'] = batch_norm(lasagne.layers.DenseLayer(
lasagne.layers.dropout(self.network['FC_N'], p=self.dropout_rates[3]),
num_units=self.nclasses,
nonlinearity=lasagne.nonlinearities.softmax))
return self.network
audioClassifier_lasagne.py 文件源码
python
阅读 18
收藏 0
点赞 0
评论 0
评论列表
文章目录