def new(self, image_dim, final_vec_dim):
input_dim = (None,) + image_dim
# Create initial nets, one per final vector element
self.nets = []
self.input_layers = []
for i in range(final_vec_dim):
l_input = layers.InputLayer(shape=input_dim)
l_conv0 = layers.Conv2DLayer(l_input, 64, (5,5))
l_max0 = layers.MaxPool2DLayer(l_conv0, (5,5), stride=3)
l_conv1 = layers.Conv2DLayer(l_max0, 32, (5,5))
l_max1 = layers.MaxPool2DLayer(l_conv1, (5,5), stride=2)
l_conv2 = layers.Conv2DLayer(l_conv1, 32, (3,3))
l_pool = layers.MaxPool2DLayer(l_conv2, (3,3), stride=1)
l_1d1 = layers.DenseLayer(l_pool, 24)
l_1d2 = layers.DenseLayer(l_1d1, 8)
l_1d3 = layers.DenseLayer(l_1d2, 1)
self.nets.append(l_1d3)
self.input_layers.append(l_input)
# Train the neural net
# @param {Matrix} trainset X
# @param {Vector} trainset y
# @param {Matrix} validation set X
# @param {Vector} validation set y
# @param {int} batch size
# @param {int} number of epochs to run
# @param {list[double]} learning rates (non-negative, non-zero)
# @param {str} path to save model
评论列表
文章目录