def extract_encoder(dbn):
dbn_layers = dbn.get_all_layers()
encoder = NeuralNet(
layers=[
(InputLayer, {'name': 'input', 'shape': dbn_layers[0].shape}),
(DenseLayer, {'name': 'l1', 'num_units': dbn_layers[1].num_units, 'nonlinearity': sigmoid,
'W': dbn_layers[1].W, 'b': dbn_layers[1].b}),
(DenseLayer, {'name': 'l2', 'num_units': dbn_layers[2].num_units, 'nonlinearity': sigmoid,
'W': dbn_layers[2].W, 'b': dbn_layers[2].b}),
(DenseLayer, {'name': 'l3', 'num_units': dbn_layers[3].num_units, 'nonlinearity': sigmoid,
'W': dbn_layers[3].W, 'b': dbn_layers[3].b}),
(DenseLayer, {'name': 'l4', 'num_units': dbn_layers[4].num_units, 'nonlinearity': linear,
'W': dbn_layers[4].W, 'b': dbn_layers[4].b}),
],
update=adadelta,
update_learning_rate=0.01,
objective_l2=0.005,
verbose=1,
regression=True
)
encoder.initialize()
return encoder
评论列表
文章目录