def generator(input_var):
network = lasagne.layers.InputLayer(shape=(None, NLAT,1,1),
input_var=input_var)
network = ll.DenseLayer(network, num_units=4*4*64, W=Normal(0.05), nonlinearity=nn.relu)
#print(input_var.shape[0])
network = ll.ReshapeLayer(network, (batch_size,64,4,4))
network = nn.Deconv2DLayer(network, (batch_size,32,7,7), (4,4), stride=(1,1), pad='valid', W=Normal(0.05), nonlinearity=nn.relu)
network = nn.Deconv2DLayer(network, (batch_size,32,11,11), (5,5), stride=(1,1), pad='valid', W=Normal(0.05), nonlinearity=nn.relu)
network = nn.Deconv2DLayer(network, (batch_size,32,25,25), (5,5), stride=(2,2), pad='valid', W=Normal(0.05), nonlinearity=nn.relu)
network = nn.Deconv2DLayer(network, (batch_size,1,28,28), (4,4), stride=(1,1), pad='valid', W=Normal(0.05), nonlinearity=sigmoid)
#network =lasagne.layers.Conv2DLayer(network, num_filters=1, filter_size=1, stride=1, nonlinearity=sigmoid)
return network
# In[23]:
binarized_wgan_mnist_openAI.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录