def __build_48_net__(self):
network = layers.InputLayer((None, 3, 48, 48), input_var=self.__input_var__)
network = layers.Conv2DLayer(network,num_filters=64,filter_size=(5,5),stride=1,nonlinearity=relu)
network = layers.MaxPool2DLayer(network, pool_size = (3,3),stride = 2)
network = layers.batch_norm(network)
network = layers.Conv2DLayer(network,num_filters=64,filter_size=(5,5),stride=1,nonlinearity=relu)
network = layers.batch_norm(network)
network = layers.MaxPool2DLayer(network, pool_size = (3,3),stride = 2)
network = layers.Conv2DLayer(network,num_filters=64,filter_size=(3,3),stride=1,nonlinearity=relu)
network = layers.batch_norm(network)
network = layers.MaxPool2DLayer(network, pool_size = (3,3),stride = 2)
network = layers.DenseLayer(network,num_units = 256,nonlinearity = relu)
network = layers.DenseLayer(network,num_units = 2, nonlinearity = softmax)
return network
cnn_cascade_lasagne.py 文件源码
python
阅读 26
收藏 0
点赞 0
评论 0
评论列表
文章目录