def extract_encoder(network, inputshape, start, end):
layers = las.layers.get_all_layers(network)
weights = []
biases = []
activations = []
layersizes = []
for l in layers[start:end]:
weights.append(l.W)
biases.append(l.b)
activations.append(l.nonlinearity)
layersizes.append(l.num_units)
input = T.matrix('input', dtype='float32')
encoder = InputLayer(inputshape, input, name='input')
encoder = autoencoder.create_pretrained_encoder(encoder, weights, biases, activations, layersizes)
return encoder
评论列表
文章目录