def feature_selection(self, data_set, feature_names):
"""
:param data_set:
:return:
"""
sel = VarianceThreshold(threshold=(.8 * (1 - .8)))
feature_set = sel.fit_transform(data_set)
fea_index = []
for A_col in np.arange(data_set.shape[1]):
for B_col in np.arange(feature_set.shape[1]):
if (data_set[:, A_col] == feature_set[:, B_col]).all():
fea_index.append(A_col)
check = {}
for i in fea_index:
check[feature_names[i]] = data_set[0][i]
print np.array(check)
return feature_set, fea_index
评论列表
文章目录