def preprocess(X,y):
### test_size is the percentage of events assigned to the test set
### (remainder go into training)
features_train, features_test, labels_train, labels_test = model_selection.train_test_split(X, y, test_size=0.2, random_state=42)
### text vectorization--go from strings to lists of numbers
vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5, stop_words='english')
features_train_transformed = vectorizer.fit_transform(features_train)
features_test_transformed = vectorizer.transform(features_test)
joblib.dump(vectorizer, 'vectorizer_intent.pkl')
### feature selection, because text is super high dimensional and
### can be really computationally chewy as a result
selector = SelectPercentile(f_classif, percentile=10)
selector.fit(features_train_transformed, labels_train)
joblib.dump(selector, 'selector_intent.pkl')
features_train_transformed = selector.transform(features_train_transformed).toarray()
features_test_transformed = selector.transform(features_test_transformed).toarray()
return features_train_transformed, features_test_transformed, labels_train, labels_test
评论列表
文章目录