def select_kbest_clf(data_frame, target, k=4):
"""
Selecting K-Best features for classification
:param data_frame: A pandas dataFrame with the training data
:param target: target variable name in DataFrame
:param k: desired number of features from the data
:returns feature_scores: scores for each feature in the data as
pandas DataFrame
"""
feat_selector = SelectKBest(f_classif, k=k)
_ = feat_selector.fit(data_frame.drop(target, axis=1), data_frame[target])
feat_scores = pd.DataFrame()
feat_scores["F Score"] = feat_selector.scores_
feat_scores["P Value"] = feat_selector.pvalues_
feat_scores["Support"] = feat_selector.get_support()
feat_scores["Attribute"] = data_frame.drop(target, axis=1).columns
return feat_scores
feat_select.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录