def main():
sys.stdout = codecs.getwriter('utf8')(sys.stdout.buffer)
parser = argparse.ArgumentParser(description='')
parser.add_argument('-i', '--input', help='Input file', required=True)
parser.add_argument('-t', '--test', help='Test file', required=True)
parser.add_argument('-o', '--output', help='Output filename prefix', required=True)
parser.add_argument('-c', '--c', help='C value for SVM', type=float, default=1.0)
parser.add_argument('-k', '--k', help='Number of features to keep', type=int, default=1000)
args = parser.parse_args()
data = read_semeval_quantification_regression(args.input, encoding='windows-1252')
texts = list()
labels = list()
topics = list()
for topic in data:
topic_texts, topic_labels = data[topic]
texts.extend(topic_texts)
labels.extend(topic_labels)
topics.extend([topic for _ in topic_labels])
analyzer = get_rich_analyzer(word_ngrams=[2, 3], char_ngrams=[4])
pipeline = Pipeline([
('vect', CountVectorizer(analyzer=analyzer)),
('tfidf', TfidfTransformer()),
('sel', SelectKBest(chi2, k=args.k)),
('clf', BinaryTreeRegressor(base_estimator=LinearSVC(C=args.c), verbose=False)),
])
_, test_topics, test_texts = read_test_data(args.test, encoding='windows-1252')
quantifier = RegressionQuantifier(pipeline)
quantifier.fit(texts, labels, topics)
quantification = quantifier.predict(test_texts, test_topics)
sorted_topics = list(quantification)
sorted_topics.sort()
with open('%sc%f-k%i-plain-E.output' % (args.output, args.c, args.k), 'w', encoding='utf8') as plainfile, \
open('%sc%f-k%i-corrected_train-E.output' % (args.output, args.c, args.k), 'w',
encoding='utf8') as corrected_trainfile, \
open('%sc%f-k%i-corrected_test-E.output' % (args.output, args.c, args.k), 'w',
encoding='utf8') as corrected_testfile:
for topic in sorted_topics:
plain, corrected_train, corrected_test = quantification[topic]
print(topic, *plain, sep='\t', file=plainfile)
print(topic, *corrected_train, sep='\t', file=corrected_trainfile)
print(topic, *corrected_test, sep='\t', file=corrected_testfile)
semeval_regression_quantification.py 文件源码
python
阅读 17
收藏 0
点赞 0
评论 0
评论列表
文章目录