def k_best_features(self):
# get total number of features.
num_features = self.features.shape[1]
feature_list = []
# find k-best features, with k from 1 to num_features.
for i in range(num_features):
skBest = SelectKBest(k=i)
skBest.fit_transform(self.features, self.labels)
# get boolean indices of the best features.
k_features = skBest.get_support()
# append the features to the feature list.
feature_list += self.features.columns[k_features].tolist()
return feature_list
评论列表
文章目录