def main():
from sklearn import svm
from sklearn.datasets import samples_generator
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_regression
from sklearn.preprocessing import MinMaxScaler
X, y = samples_generator.make_classification(n_samples=1000, n_informative=5, n_redundant=4, random_state=_random_state)
anova_filter = SelectKBest(f_regression, k=5)
scaler = MinMaxScaler()
clf = svm.SVC(kernel='linear')
steps = [scaler, anova_filter, clf]
cached_run(steps, X, y)
评论列表
文章目录