def __init__(self, num, batch_size=1, progress_bar=False, log_epoch=10, get_fn=None, cycle=False, shuffle=True, stagnant=False):
"""Construct a batch iterator.
Args:
data: numpy.ndarray, (N, D), N is the number of examples, D is the
feature dimension.
labels: numpy.ndarray, (N), N is the number of examples.
batch_size: int, batch size.
"""
self._num = num
self._batch_size = batch_size
self._step = 0
self._num_steps = int(np.ceil(self._num / float(batch_size)))
self._pb = None
self._variables = None
self._get_fn = get_fn
self.get_fn = get_fn
self._cycle = cycle
self._shuffle_idx = np.arange(self._num)
self._shuffle = shuffle
self._random = np.random.RandomState(2)
self._shuffle_flag = shuffle
self._stagnant = stagnant
self._log_epoch = log_epoch
self._log = logger.get()
self._epoch = 0
if progress_bar:
self._pb = pb.get(self._num_steps)
pass
self._mutex = threading.Lock()
pass
评论列表
文章目录