train_network.py 文件源码

python
阅读 19 收藏 0 点赞 0 评论 0

项目:audio-classifier-keras-cnn 作者: drscotthawley 项目源码 文件源码
def build_model(X,Y,nb_classes):
    nb_filters = 32  # number of convolutional filters to use
    pool_size = (2, 2)  # size of pooling area for max pooling
    kernel_size = (3, 3)  # convolution kernel size
    nb_layers = 4
    input_shape = (1, X.shape[2], X.shape[3])

    model = Sequential()
    model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
                        border_mode='valid', input_shape=input_shape))
    model.add(BatchNormalization(axis=1, mode=2))
    model.add(Activation('relu'))

    for layer in range(nb_layers-1):
        model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
        model.add(BatchNormalization(axis=1, mode=2))
        model.add(ELU(alpha=1.0))  
        model.add(MaxPooling2D(pool_size=pool_size))
        model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Dense(128))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))
    model.add(Dense(nb_classes))
    model.add(Activation("softmax"))
    return model
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号