def test_tiny_conv_prelu_random(self,
model_precision=_MLMODEL_FULL_PRECISION):
np.random.seed(1988)
# Define a model
from keras.layers.advanced_activations import PReLU
model = Sequential()
model.add(Conv2D(input_shape = (10, 10, 3),
filters = 3, kernel_size = (5,5), padding = 'same'))
model.add(PReLU(shared_axes=[1, 2]))
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
# Get the coreml model
self._test_keras_model(model, model_precision=model_precision)
评论列表
文章目录