def conv_wrap(params, conv_out, i):
from keras.layers.normalization import BatchNormalization
from keras.layers.advanced_activations import PReLU
from keras.layers.convolutional import Convolution2D
from keras.layers import Dropout
# use filter_width_K if it is there, otherwise use 3
filter_key = "filter_width_%d" % i
filter_width = params.get(filter_key, 3)
num_filters = params["num_filters"]
conv_out = Convolution2D(
nb_filter=num_filters,
nb_row=filter_width,
nb_col=filter_width,
init='he_normal',
border_mode='same')(conv_out)
conv_out = BatchNormalization()(conv_out)
conv_out = PReLU()(conv_out)
if params["dropout"] > 0:
conv_out = Dropout(params["dropout"])(conv_out)
return conv_out
评论列表
文章目录