def build_model(self):
model = Sequential()
model.add(Dropout(0.1, input_shape=(nn_input_dim_NN,)))
model.add(Dense(input_dim=nn_input_dim_NN, output_dim=310, init='he_normal'))
model.add(LeakyReLU(alpha=.001))
model.add(BatchNormalization())
model.add(Dropout(0.6))
model.add(Dense(input_dim=310,output_dim=252, init='he_normal'))
model.add(PReLU(init='zero'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(input_dim=252,output_dim=128, init='he_normal'))
model.add(LeakyReLU(alpha=.001))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Dense(input_dim=128,output_dim=2, init='he_normal', activation='softmax'))
#model.add(Activation('softmax'))
sgd = SGD(lr=0.02, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd, loss='binary_crossentropy',class_mode='binary')
return KerasClassifier(nn=model,**self.params)
评论列表
文章目录