def nn_model():
model = Sequential()
model.add(Dense(450, input_dim = xtrain.shape[1], init = 'he_normal')) #400
model.add(PReLU())
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Dense(225, init = 'he_normal')) #220
model.add(PReLU())
model.add(BatchNormalization())
model.add(Dropout(0.25)) #0.2
model.add(Dense(60, init = 'he_normal')) #50
model.add(PReLU())
model.add(BatchNormalization())
model.add(Dropout(0.15)) #0.1
model.add(Dense(1, init = 'he_normal'))
model.compile(loss = 'mae', optimizer = 'eve')
return(model)
评论列表
文章目录