def nn_model():
model = Sequential()
model.add(Dense(400, input_dim = xtrain.shape[1], init = 'he_normal')) #400
model.add(PReLU())
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Dense(120, init = 'he_normal')) #200
model.add(PReLU())
model.add(BatchNormalization())
model.add(Dropout(0.2))
model.add(Dense(30, init = 'he_normal')) #50
model.add(PReLU())
model.add(BatchNormalization())
model.add(Dropout(0.1)) #0.2
model.add(Dense(1, init = 'he_normal'))
model.compile(loss = 'mae', optimizer = 'adadelta')
return(model)
评论列表
文章目录