def nn_model(dims):
model = Sequential()
model.add(Dense(400, input_dim=dims, init='he_normal'))
model.add(PReLU())
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Dense(200, init='he_normal'))
model.add(PReLU())
model.add(BatchNormalization())
model.add(Dropout(0.2))
model.add(Dense(50, init='he_normal'))
model.add(PReLU())
model.add(BatchNormalization())
model.add(Dropout(0.2))
model.add(Dense(1, init='he_normal'))
model.compile(loss = 'mae', optimizer = 'adadelta')
return(model)
train_predict_krs1.py 文件源码
python
阅读 19
收藏 0
点赞 0
评论 0
评论列表
文章目录